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Quantum disordering versus melting in Lennard-Jones clusters
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The ground states of Lennard-Jones clusters for sizes up to n=147 are estimated as a function of the de Boer
quantum delocalization length A, and the n— A “phase diagram” is constructed. The increase in A favors more
disordered and diffuse structures over more symmetric and compact ones, eventually making the liquidlike
motif most energetically favorable. The analogy between the quantum- and thermally-induced structural tran-

sitions is explored.
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The Lennard-Jones (LJ) clusters exhibit rich thermody-
namic properties and display complex behavior that is sensi-
tive to their size and temperature (see Refs. [1-6] for ex-
amples). Both classical and quantum LJ clusters have been
studied very extensively in the last several decades. Even
without taking into account the quantum effects these sys-
tems have always made accurate simulations challenging due
to the high complexity of their potential energy landscapes.
Consequently, these studies have stimulated the development
of various numerical techniques, such as Monte Carlo or
molecular dynamics, or various algorithms of global optimi-
zation, etc.

With some notable exceptions, for sizes n= 1000 the glo-
bal minima structures of LJ, clusters are dominated by the
icosahedral motif [7,8], while the closed-packed structures
start to be favorable only around n~ 10° [9]. An icosahedral
structure may be characterized by the existence of a com-
plete icosahedral core (n=13,55,147,...) surrounded by an
incomplete overlayer, which can adopt two different pack-
ings: the anti-Mackay (n=14-30,56—-81,85,...) or Mackay
(n=31-55,82-147,...). There are several exceptions of
clusters (n=74-76,98,102—104,...) that adopt nonicosahe-
dral structures as their global minimum configuration.

At finite temperatures local energy minima start to con-
tribute to the equilibrium properties of the cluster. The pres-
ence of different structural motifs that may be favorable for
certain ranges of the parameters (n or T) gives rise to size- or
temperature-induced structural transitions, resulting from
competition between the energy and entropy. Even for rela-
tively small sizes (n~20) the number of the thermodynami-
cally relevant minima for a LJ, cluster is already very large
and keeps increasing exponentially with size. Moreover,
these minima are often separated by large barriers leading to
severe sampling problems. The replica-exchange Monte
Carlo method [10] is commonly employed to deal with such
problems. The first successful application of the latter to a LJ
cluster (n=38) had been reported relatively recently [2]. De-
spite an apparent superiority of the methodology, at the time
this calculation seemed to be heroic. More recently a series
of replica-exchange calculations covering a wide range of
sizes was carried out [3-6].

Notwithstanding the difficulties of a classical simulation
of LJ clusters, accurately modeling the quantum effects is
further challenging. Calculations using path integral Monte
Carlo (PIMC) methods, when converged, provide essentially
exact results. However, when trying to accurately describe
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structural transformations using PIMC, the computation
times can be excessively long and increase dramatically with
decreasing temperature. Because in the case of a structural
transition at least two basins of attraction, usually separated
by a large energy barrier, must be sampled, regardless of
whether the quantum effects are included in the simulation or
not, the sampling problem already exists. In the PIMC
framework this problem is alleviated by the presence of an
additional (short) time scale associated with the path vari-
ables describing the shape of the path. Strong quantum ef-
fects (such as quantum delocalization and/or tunneling), as,
e.g., in the helium systems, may effectively remove the er-
godicity problem. However, it is the intermediate quantum
regime, which is most challenging for accurate quantum
simulations, especially for systems that undergo structural
transformations at low temperatures. Examples of such sys-
tems include neon clusters, and, very likely, hydrogen clus-
ters. Perhaps not surprisingly, the Ne;; cluster is the largest
neon system undergoing a low-temperature (7~ 10 K)
structural change, for which a converged heat capacity curve
computed by the PIMC was reported [11]. Larger neon clus-
ters, e.g., Nesg, which undergo low-temperature structural
changes [12], seem at the moment too difficult to be treated
accurately by PIMC [13]. As yet another example, we be-
lieve that the recent attempt [14] to compute the ground
states of (H,),, and (D), clusters using a variant of the PIMC
methodology seem to fail to accurately characterize the size-
induced structural changes in these systems. In another paper
[15] the diffusion Monte Carlo methodology was used to
also compute the ground states of (H,), clusters, but the
results are in disagreement with Ref. [14] and are possibly
nonconverged as well.

A rare gas atomic system or a molecular system (e.g., a
hydrogen cluster) interacting through van der Waals forces
can be mapped to a model LJ,, system with a particular value
of the de Boer quantum delocalization length A
=(#/\Vme)/ o, where m is the particle mass, and € and o are
the parameters of the LJ pair potential,

U(r) = 4€(a/r)"? = (a/r)%].

A is an effective measure of delocalization of the ground-
state wave function relative to the interatomic distance. Al-
though only particular discrete A values can be realized in
nature, by looking at the properties of LJ, cluster as a func-
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tion of continuously varying A one can gain insights, which
are not available otherwise.

Faced with the above difficulties, for weakly quantum
systems, it seems to be practical to use approximate methods
that have better sampling properties, but may still account
for the quantum effects adequately. One such method is the
harmonic approximation (HA), which can be used for esti-
mation of the ground-state energies and wave functions for
the entire range of A. As an example, Ref. [9] presents a HA
analysis of the ground-state structures of LJ clusters corre-
sponding to different rare gas atomic clusters. While the HA
is straightforward to implement and it may be adequate for
nearly classical cases, as e.g., xenon (A~0.01), krypton
(A~0.016) or argon (A ~0.03), in a more quantum regime,
e.g., corresponding to neon (A=0.095), the HA predictions
can be very crude [16,17].

Our method of choice is the variational Gaussian wave
packet (VGW) method [12,16,17]. The VGW is exact for a
harmonic potential, while it is manifestly approximate for a
general anharmonic potential, yet this method demonstrated
its practicality, specifically, for the case of Nesg [16], for
which the VGW energies agreed very well with those com-
puted by the PIMC method. In our previous work [17] the
VGW method was applied to investigate the LJ3;_45 clusters,
which, with the exception of LlJsg, possess Mackay global
energy minima. It was shown that the quantum delocaliza-
tion always induces the Mackay — anti-Mackay (M — aM)
transition. Consequently, a “phase diagram” showing the sta-
bility ranges of the two structural motifs was constructed.

The present Brief Report extends the ground-state calcu-
lations of LJ, clusters up to n=147, the largest size of a
three-layer cluster with icosahedral symmetry. As n increases
the VGW calculations become increasingly more time-
consuming. In order to reduce the computational burden only
the following sizes were included: n=31-55,60,65,70,
75-77,80,82-90,95,98,100,102-104,105,110,115,120,
125,130,135,140,145,147. Llg, is the smallest cluster with
Mackay global energy minimum and 55-atom core. The
sizes, n=38,75-77,98,102—104, include all the cases of
nonicosahedral global energy minima, namely, truncated oc-
tahedron (0O;) for n=38, Marks decahedra (D,) for n
=75-77,102—-104, and tetrahedron (T,) for n=98.

The VGW method for estimating the cluster ground-state
energy and structure is based on minimization of the energy
functional,

E=(V|HW)P[¥)!, (1)

with the trial wave function (or VGW) chosen in the form

1
¥(q,G,y) =exp —E(r—q)TG"(r—q)+7 )

where the variational parameters are: the 3n X 3n real sym-
metric matrix G, real 3n-vector q, and factor 7.

For each cluster size the replica-exchange method [10]
(using the system potential energy) is utilized to sample the
configuration space. Every once in many Monte Carlo steps
a configuration is selected from one of the random walks for
(quantum) quenching to yield a stationary VGW that mini-
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FIG. 1. (Color online) Correlation diagram for LJ;y, showing
the relative energies, AE;(A):=[E{(A)—E,(A)]/n, as a function of
A for four quantum states, each being the lowest-energy state for
one of the four different structural motifs. i=0 corresponds to the
global classical energy minimum. The structural transitions occur
where the curves intersect each other.

mizes the energy functional (1), given the Gaussian con-
straints (2). Typically the quenched configuration is found in
the vicinity of the initial configuration. The energy of the
particular stationary solution is then compared to the ener-
gies of the solutions found previously. Configurations of suf-
ficiently low energy are retained to be used later to produce
energy correlation diagrams. The latter consist of the energy
curves E;(A) generated for a range of A using all the retained
configurations. Given a value of A, the lowest energy con-
figuration is then assumed to represent the cluster ground
state. More details of the method can be found in Ref. [17]
and in a forthcoming paper.

The analysis of all the correlation diagrams revealed sev-
eral distinct structural motifs that turned out to be stable
within certain ranges of A. Those include the Mackay (M),
anti-Mackay (aM), and liquidlike (L) structures, which are
generic for all clusters considered. In addition, for clusters
with nonicosahedral global energy minima, the correspond-
ing structural motifs remain stable within certain (sometimes
very small) ranges of A values. One such example is the
LJ, o, cluster, which in addition to the two generic transitions
(M—aM and aM— L) undergoes a D;,— M transition at A
~4.1X 1073, The corresponding correlation diagram, which
only shows one energy curve per structural motif, is given in
Fig. 1. The four ground-state structures involved in this fig-
ure are shown in Fig. 2. (We use reduced variables for energy
and temperature, i.e., the energy is measured in units of [€]
and temperature, in units of [e/kg].)

All the identified A values corresponding to the structural
transformations in LJ, clusters were used to produce the n
—A “phase diagram” (see Fig. 3), which shows the stability
regions for different structural motifs as a function of » and
A. The size-temperature (n—T) phase diagram of the classi-
cal (A=0)LJ, clusters is also shown for comparison. The
latter diagram was constructed based on the data from Refs.
[4,6]. There is a striking resemblance between the two dia-
grams, in which one can find the same structural motifs
stable over certain ranges of parameters. Structurally, motifs
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FIG. 2. The four configurations of LJq, cluster involved in Fig.
1. The darker color is used to identify the core atoms in the Mackay
and anti-Mackay structures. The A and T axes identify the values of
the corresponding structural transitions for, respectively, quantum
(T=0) and classical (A=0) cases.

denoted by the same symbol are indistinguishable. Note
though that unlike the high-temperature liquid configurations
in the classical diagram, the quantum “liquidlike” structures,
although being disordered, are completely frozen. The
quantum-induced aM — L (“order-disorder”) transition in the
present case has nothing to do with quantum tunneling, nor
does it involve any superfluidity as the exchange symmetries
are not taken into account within the VGW approximation.
Quantum delocalization (as well as the temperature in-
crease) always stabilizes the anti-Mackay relative to the
Mackay motif. Further increase in A (or T) eventually desta-
bilizes the anti-Mackay structure resulting in the least-
ordered liquidlike structure. However, for small, two-layer
clusters, we were not able to clearly distinguish between lig-
uidlike and anti-Mackay structures. The probable reason is
that the 13-atom icosahedral “core” is typically not unique
for an anti-Mackay structure (i.e., there may be several 13-
atom subclusters having the same arrangement of the com-
plete icosahedron), while the 12-atom coordination is also
characteristic of liquidlike structures. (This problem may be
resolved in the future if an appropriate order parameter is
found.) A similar difficulty was encountered when analyzing
the temperature-induced structural changes in classical LJ,
clusters [4], for which the liquid and anti-Mackay structural
motifs could clearly be distinguished only for three-layer
clusters (55<n=147), the existence of the well-ordered
complete-icosahedral 55-atom core being a unique property
of the icosahedral motif. For the latter clusters the heat ca-
pacity curve displays a sharp peak at the temperature of the
aM—L transition (also identified as the “core melting tran-
sition”). For the classical two-layer LJ clusters only the M
—aM transition can be identified unambiguously and is al-
ways accompanied by a sharp heat capacity peak. Further-
more, this peak changes gradually as a function of cluster
size and continues into the size region (n>45), where the
two-layer anti-Mackay structures do not exist. That is, if one
follows the M — aM transition as a function of cluster size,
starting with small sizes (n=31), it gradually changes in
character, so that for larger clusters it is perhaps more repre-
sentative of just “cluster melting.” Figure 4 shows two ex-
amples of anti-Mackay ground-state structures for n=115
(the stability range is A €[0.1116,0.3540]) and n=147 (A
€[0.3102,0.4121]). Although the largest structure with a
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FIG. 3. (Color online) The n—A phase diagram (top) showing
the stability ranges for the ground-state structures of quantum LJ,
clusters (n=30-147). The points are connected for better visualiza-
tion. The bar for n=98 is scaled by a factor of 10, also for better
visualization. The question mark indicates the difficulty in distin-
guishing between anti-Mackay and liquidlike structures for two-
layer clusters. Bottom: the corresponding n-7" phase diagram, which
bears similarity to the top figure. The latter diagram was constructed
using the data from Refs. [4,6].

single-anti-Mackay overlayer surrounding the 55-atom
Mackay icosahedral core corresponds to LJ; ;s (having a per-
fect, nearly spherical shape), for n>115 structures with
double-anti-Mackay overlayer can become energetically fa-
vorable and are easily identified, as in the case of LJ4;. Note
also Ref. [5], where two temperature-induced structural
transformations were observed for the classical L]y cluster,
whose global minimum is a complete four-layer Mackay
icosahedron. In the latter work the lower-temperature transi-
tion was interpreted as “surface roughening” of the overlayer
surrounding the 147-atom Mackay icosahedral core.

For the lack of both a rigorous and simple method, one is
often tempted to incorporate the quantum effects into the
molecular dynamics simulations by using an “effective tem-
perature.” The comparison of the classical n—T(A=0) and
quantum n—A(7T=0) diagrams suggests that such a mapping
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FIG. 4. (Color online) Images of anti-Mackay structures of L5
and LJ47, each characterizing the ground state of the corresponding
cluster stable over certain A range. n=115 is the largest size with
55-atom Mackay icosahedral core and anti-Mackay overlayer. For
n>115 the extra atoms fill the fourth layer forming a double-anti-
Mackay overlayer, which can be seen in the “side view.”

exists on a certain qualitative level, although it is not univer-
sal. For example, in the n—T(A=0) diagram the M — L and
M — aM transition temperatures merge for n= 140, while in
the n—A(T=0) diagram the M— L and M — aM transitions
for the same size range occur at different values of A.

Another interesting parallel exists between the present n
— A diagram for the quantum LJ, clusters and n—p diagram
for the global minima structures of the classical Morse clus-
ters [18,19], where the Morse pair potential is

U(r) = € explp(1 - ro) Kexpl p(1 - r/o)] - 2}

with p defining the range of the potential; the larger the p
value the shorter the range. Increasing the range of the po-
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tential destabilizes the Mackay (relative to the anti-Mackay)
structures. Further increase in the range eventually makes the
liquid-like structures energetically most favorable. In view of
this comparison we conclude that the quantum delocaliza-
tion, besides making the effective pair interaction softer, also
increases its range.

In conclusion, we believe that for the weakly quantum
regime, which at least includes the neon clusters, our results
are generally correct, but may only be qualitatively correct
for the more quantum regime, perhaps starting with hydro-
gen clusters. When the quantum effects are sufficiently
strong, the Gaussian approximation may fail to adequately
describe the delocalized ground-state wave function. More-
over, it is believed that the particle exchange symmetry be-
comes important, at least for hydrogen clusters, and may
even result in superfluidity [14], while this effect is com-
pletely ignored within the present approximation. At the
same time, due to the sampling problems, the path-integral
and related methods may be hard to apply in the weakly
quantum regime, while they become much better suited for
the strongly quantum regime.
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